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Joseph 0. Hirschfelder
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Center (U. S. Army) and Theoretical Chemistry Institute on
October 4-6, 1965, at Madison, Wisconsin. The proceedings of
this symposium, including this paper, will be published by

John Wiley and Sons, Inc. (1966).

ABSTRACT ? 5»} 0 7

This paper is a general survey of the ways in which low
order perturbation theory is used in quantum mechanics to
determine the energy and other properties of molecules. The

various types of mathematical problems encountered are discussed.

* This research was supported by the National Aeronautics and
Space Administration Grant NsG-275-62.
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Now Fills Thy Sleep With Perturbation ( Richard III, Shakespeare)

It is easy to write down a Hamiltonian operator such that its ‘

e1genvalues give the energy of each of the allowed states of a ;

| ‘molecule and such that the corresponding eigenfunctions determine |

ithe probability density of single electrons and clusters of pairs,
‘triples, etc. in electron configuration space. To solve such a ‘
-Schrédinger equation is comparable in difficulty with the classical

: problem of determining the precise orbits of each of the planets, '
§moons,; comets, etc. in the solar system. Clearly the solutionto

}:su‘ch problems must be approximated by the use of perturbation series “
‘rand variational procedures. Theoretical chemists are trying to
: develop suitable methods of solution. Some of the difficulties which

‘they encounter could be overcome by the use of techniques which are

- known by the professional mathematicians. It is the purpose of this’
- symposium to open up a communications channel between the theore-
‘tical chemists (who have the problems) and the mathematicians (who

can diagnose the problems). Actually, many of the new develop- 1

‘ments in spectral theory are closely related to our practical problems.
37

!Thus, we have mutual research interests. .

! . We hope that the development of new mathematical methods
‘and the availability of high-speed computing machines will make it-
;feasible to calculate expectation values of the energy and other

. properties of molecules with a precision at least comparable to

- corresponding values obtained by laboratory experimentation, Pre-

: property-in order-to establish the reliability of-our-theoretical esti-
-mates. However, there are a number of mathematical difficulties
“which must be overcome before we can succeed in our practical ob-
‘jectives. We want to thank you for coming to this Symposium and

helpmg us to "overcome''! l !
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four considerations:

“by the use of variational principles.

‘sets. The resulting optimum linear combinations provide approxi-

the relationship between variational principles and perturbation

‘turbation. Thus, the Rayleigh-Ritz variational principle leads to

I will try to outline the ways in which perturbation theory is .
used in molecular quantum mechanics and point out some of the
mathematical problems [1]. Perturbation theory is one of the most ’
promising approaches to molecular quantum mechanics. It has the !
great advantage that the furctionsal form of the perturbed wave func-%
tion is shaped by the perturbation itself. Frequently, sufficient 1
accuracy is obtained from even the first-order perturbed wave func-
tion. From such a function, the energy can be computed accurate
through the third order and the expectation values of other properties
can be obtained accurate through the first order. Indeed, the wave |
function accurate through the n~-th order permits the energy to be (
calculated through the {2n+1) ~st ordér.

I. REASONS FOR RECENT SUCCESS

Recent interest in perturbaiion theory has been sparked by

1) A number of methods can be used for the direct solution
of the perturbation equations, Formerly, the solutions of the per- !
turbation equations were expressed in a speciral representation as !

.a sum over the discrete energy states and an integral over the con-
‘tinuum energy states of coefficients times eigenfunctions of the un-|
perturbed Hamiltonian. Unfortunately, in most molecular problems, !

it is difficult to construct a satisfactory unperturbed Hamiltonian i

“for which we know the complete set of eigenfunctions and eigenvalués
‘Thus, the spectral representation formalism was seldom useful. In-|
. stead, we now seek direct solution to the inhomogeneous differential

or differential-integral perturbation equations. Sometimes these
equations are separable and the solutions can be obtained by quad-
rature. However, more frequently, the solutions are approximated

2} Good variational principles are available for both upper
and lower bounds to particular orders of perturbation energy. These!

!

principles are generally applied to appropriate truncated function |
mations to individual terms in the perturbed wave function. However,

theory is not limited to this type of application. Every general var-
iational principle applies separatély to each individual order of per-

the Hylleraas principle which gives an upper bound to the second

order energy. Similarly, the varistional principles associated with
the virial, hyper-virial, and Hellmann-Feynman theorems are useful
in perturbation theory.
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3) The Dalgarno "interchnange theorem!'' can be used for 5
calculating properties other than energy. This greatly simplifies
the calculations of the first order correction to the expectation
values which result from the "badness' of the approximate wave
function. The only perturbaiion equations which must be solved i
involve a real or fictitious external perturbation, and not the internal:
perturbation. Since the external perturbation is usually the sum of {
one-~electron operators, these eqguations may be easy to solve. ’
Without the Dalgarno "interchange theorem'' it would have been '
necessary to solve much more diificult perlurbation equations in-
volving two-electron repulsion terms. The first order correction to
the physical properties should result in considerable improvement
over the zeroth order expectation values which have previously been
available. Unfortunately, the interchange thecrem provides very
little help in calculating the second order and higher corrections,

4) Wigner showed that if we know the wave functions
accurate through the nth order then we can calculate the energy
accurate through the {2n+ 1) st order. This theorem is obvious, ;
since an error of order {(n-1) in the wave function produces an ’
error of order (2n+ 2) in the expectation value of the energy. Thus,:
if we know the wave function accurate through the first order, we x
can calculate the energy accurate through the third order. For many:
: chemical purposes this may be sufficient.

- II. APPLICATIONS OF PERTURBATICON THEORY

Perturbation theory can now be applied to a wide range of
" problems:

1) The calculation of molacular energies and the improve-
ment of approximate eigenfunctions. :

2) The determination of time- mdependem moleculdr i
: propertles.

'3) The determination of properties of molecules in external -
.fields."

i
H
]
!

4) The calculation of transition probabilities and off- dlagonal,

matrix elements.

6) The splitting of degenerate energy states due to both |
internal and external perturbations. ~

7) The derivation of "swn rules',

8) The derivation of variational principles. associated with
perturbation theory. - %
i



Since the inception of quantum mechanics, perturbation ‘
theory has been considered the appropriate tool for dealing with the.
effects of external fields,with the long range interaction between i
atoms and molecules,and with the small internal perturbations such
as those that give rise to the fine and hyperfine structure of spectral
lines. However, it is only recently that perturbation theory has {
been applied seriously to the fundamenial problems of quantum i
chemistry which are concerned with the binding energy and with thei
- structure and physical properties of the molecules. For such appli-
cations, the perturbations involve electron correlations and the

~ perturbations are frequently large. - _ b

III. CONVERGENCE

A great deal of research has been done on the nature of the '
eigenvalues and the eigenfunctions of the perturbed quantum mech- |
anical operators. Friedrichs, Rejto and others will discuss this :
interesting topic in considerable detail. For most of our molecular :
quantum mechanical applications, the basic theorem of Rellich [ 2] !
and the corollary of Kato [ 3] provide a justification for the use of

perturbation theory [ 4].

' RELLICH (1939) THEOREM:

| If Hy is self-adjoint and if ¢ is any function in the

! domain of Hy, then the Rayleigh-Schrédinger perturbation
:.series converge for E(X) and ¥(\) for sufficiently small:
:values of N provided LhaL two conqtants a and b exist

. such that :

<Volve> _<_a<HO¢>|HO¢> +b<ole> .

- KATO (1951) COROLLARY: S

The Rayleigh-Schrédinger perturbation theory applies{for -

":sufficiently small A) to any decomposition of the electro-
. static Hamiltonian H for any atom, molecule, or {finite
crystal into two parts, H, and AV,

H“:H;mv

"prov1ded that no new smgulamtles stronger than Coulombic
poles are introduced.
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v,

(1)

We fix our attention on the non~degenerate [ 5] energy state ''o"
which has the perturbed energy E, &

that

(2)

THE BRILLOUIN-WIGNER AND RAYLEIGH-SCHRODINGER

PERTURBATION EQUATIONS.

There are two principal types of perturbation theory which
can be used: Rayleigh-Schrédinger and Brillouin-Wigner. The two
procedures have much in common.
the perturbed system is split into Hg, the Hamiltonian for the un-
perturbed system, and AV, the perturbation potential:

In both, the Hamiltonian H for

H=H +\V.
e}

nd the wave function ¥,, so

(H"‘E‘;O)\I,o:o-

.

- We assume that E, and ¥, can be expressed as power series in ;
the parameter A , writing

 ( 3)-( 4)

. It is supposed that we know the wave function Yo =4

o0 0
E o=l g o) amyin)
o] (o] [0} o
n=0 : n=0

. corresponding energy e ° = eéo) . Thus,

(5)

(Hy-e )b, =0 .

(e

(o)

o = andits |

' The Rayleigh-Schrddinger and the Briilouin-Wigner procedures then ,

differ in the manner in which they resolve the Schrddinger equation.".

[6]:

(6)

i

RAYLEIGH-SCHRODINGER

(H=- E)T, = (H =< )¢

o' "o
z i { o 0
e g )y A
n=1 - 'i‘
L ksl

..................

W D o o

e



(8 . (H

and

!
‘ ' Pl
-If these equations are to remain valid as the perturbation parameter : .
.\ is varied over a continuous range of values, the coefficient of 1

e ifa e T/ (inell Foh.) 27 x 44 pieas

o - SO ANIGOIN OO0 000000000

T T R T SR I O M K T R R U N R N
| : 6 P
'BRILLOUIN-WIGNER Pl
7 (H-E )T = - P
;( ) ;(H Eo) o (HO € )¢ b
1 ! '7
} &
(n) (n-1)_ () P
+ A -E =0 . ! 5
\ Z [(Ho o)¢o q’o ‘o ¢o] P
: n=l , | iy

i

each power of A must be individually zero. Thus, we obtain the @ =

Raylelgh Schrbdinger and the Brllloum Wigner perturbation. equations' 10

RAYLEIGH SCHRO DINGBR

,‘

) (n) _

o o O

 BRILLOUIN-WIGNER

The more familiar forms of the Brillouin-Wigner equations may be
and eo(
set of eigenfunctions ¢ and eigenvalues ¢ of the unperturbed
- Hamiltonian Hg. If we let Vjy = <i; lVlLle , then ~

obtained by expression lIJ(n)

i
¢
i

(n) ZZ Z

(n

l

§
i

Loy n)
(9) (HO-EOWO =

i
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~Eq. (8) is more attractive. We know a solution 4‘0 to the homogeni-

Fp such that xl;on): Fobs - ’I.‘hen Eq. _(8) becomes

The prime on the summation sign indicates that none of the
'j15325+ee,Jp should equal to "o'. ; :
If we do not know the complete set of unperturbed eigen- f N
.functions and eigenvalues, the Brillouin-Wigner equations are much
‘more difficult to solve than the Rayleigh-Schrédinger. First, we do !
‘not know a solution to the homogeneous equation (Ho -EQ) Lp(n) =0 5
‘of the Brillouin-Wigner Eq. (9). Second, for most practical problems, o
‘since Eg, is not known in the beginning, trial values Eo must be Iy
‘used in Eq. (9). Thus Lpé,“) and eén are obtained as [ 7] functions: :
of Eg. Finally, the correct value of Ey is determined by requiring i:
.the satisfaction of Eq. {3). Thus, the direct solution of the Brillouin-!
ngner perturbation equations is unwieldy. As a result, very few of 1+

Vot

the new developments utilize the Brillouin-Wigner treatment. P b
i 1o

i ‘ i
'V. DIRECT SOLUTION OF THE RAYIEIGH-SCHRGDINGER Loas
PERTURBATION EQUATIONS ’ boa

In contrast, the direct solution to the Rayleigh-Schrédinger |

‘eous equation (Hg, O)LIJ(n) = 0 corresponding to Eq. (8). Asa | 2=
result, we can use th.e met%od of Wronskians,Green's functions, or | 24
other well-known techniqués to solve the inhomogeneous equation. = 7

For example, as Dalgarno and Lewis have suggested [8], if V isa! <&
‘real Hermitian operator, we can define a set of real scalar functions! 29

S
i PoAl
P ‘ :
; : (k) e
(10 = - . i
(10) [H F 19, = - VF _14: +Z S SN 2
. | | kl Poan
Furthen: . o
Furthermore, if Hgy has the form by
4 o 3
! ‘ 1 i e
an H =- —Zv C VU, L
; ; o 2. : ; 0
| R ? 1
where Uo is a scalar function (Wthh therefore commutes with Fn ), )3
then Eq. (10) can be expressed in the form Y

(12) ZV (4ot VF )= VE lw e gty Y e “‘) N
k=1 n-

If Eq. (12) is one dlmensional or separable, it may be integrated by

quadratures. T T T g



- If we require that ¥,, as well as ¢o, is normalized to unity, then
- it follows that

In order to complete the specification of the functions F, it;
is necessary to specify the normalization of the wave functions [ 9].!

.
1

x :

H - '

: .

i
i

; a

’ | k)| (n-k

(1 PRI )Iq:f)“ >

?or |

: n ! - \

| | Z<¢|FF Lo >=0. %
k=0 ©
1

i 1For a problem in one-dimensiohal cartesian coordinates, |

= ' ' *ax! &
5(14) ‘ Fn = f = f Sn(xn) dx" .

' . = quq"o N

, i
. : ) i
‘Here S,(x) is the right hand side of Eq. (12). If ¢, has nodes, ;
then Fy can have poles at the nodal points [10]." If the nodal points

lare at X = 8;,83,.+4,8y and welet :
) ! C :
{
| a,
| | |
(15) o == | J s RESL A
! ’ :k ’
then Eqs (14) should be replaced by
' i
o ;
i i _fx dx! Z 'C q) ¢ f S (X")d.X"
: { Fn - * - __"'_'—z' .
T e I

The same result may be obtained by replacing the integration over x!
'in Eq. (14) by a contour integral following any path between - and
X which avoids the nodal points which occur on the real axis.

If Eq..(12) is not.separable and ¢, has complicated nodal..
surfaces, the integration of Eq. (12) may pose some interesting
‘mathematical problems! Clearly, one would never use the Dalgarno-
Lewis substitution xp(“) = F ¢ for such a case. Instead, Brueckner
.suggests that we express the n-th.order perturbed function as
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(16) $tn =[F_+VG_ -V

where the function G,, is chosen so as to properly shift the nodes of
the wave function as a result of the perturbation. Eq. (16) takes

advantage of the fact that the wave function and its gradient cannot :
simultaneously vanish. Brueckner and Gammel [1l] have used essen-

t

‘tially this form of Lp( n) in connection with the theory of finite nuclet. ! .

f
i
i
i

VI.. THE FIRST ORDER WAVE FUNCTION
If we know a zeroth order approximate wave function, we
know the energy accurate through the first order. The first order

perturbation equation may be written ' |

o

? ‘ ~ n Lo (.
(17) | (HO-eo)lpo +(V-ve° Y =0,

If we multiply Eq. (17) by LP and integrate over all space, then
since Hg is Hermitian, it fgllows that

- (H,
| <¢0|Ho X I¢ =0
?,and therefore, ‘
| | (1 _ |
1(13) ; < _<¢0Ivl¢o> .

;Indeed, the expectation value of the perturbed Hamiltonian corres-
‘ponding to the zeroth order wave function is

G c(o =<yl e eaell

(1),

If now we solve Eq. (17) for Y5 'y then we can obtain the energy
‘accurate through the third order. In order to see why this is true we
need to consider the second and third order perturbation equationsg

¢

? (2) Sy ) (2)
(200 (H e )y TV “to "y Yy EEL B ontmeerenieenrenes
~ (3) (D), (2) _ (2) (1), (3) :
“(21) (Ho-eONJO + (V—leo )LIJO =€ tpo + €0 LIJO ..

. * . ' !
If we multiply Eq. (20) by g then, since - — - — — — - = — . |

s
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: 0
N 1k2) |
| ,<¢OIHO-eQI¢O >=0, '
it follows that
- ; . o :
: 5 (2) _ (1), (1) ?
;(22) 2 eo -<¢OlV‘ Eo N;o >, f

iSlmllarly if we multiply Eq. (21) by \p and integrate over all space
‘we obtam

5 (3) (L) ,(2) ( (1)
. X : = < - .

(23 e b lv-e Vul s B ey gl |
‘Now we can make use of the Hermitian propertles of V and H y to-

:gether with the normalization condition for Lp( ) and Egs. (17) and l

(20), to perform the following chain of relat10ns~
; i ‘
' (3)

R T (1))4:141(2) e

(24) Yy 14D |

i = - <(H e)w(”lw‘z) ey s
; =-<¢f,”lHo- {22y [yl

(1)}, (1)l¢<1)> (2

= <y! [<¢“’I¢ >+ <y I¢“’>]

<My mw(n

iIt follows that the expectation Value of the energy calculated with
the wave function +)\¢g 1) 4s given by

i oo
i

| v 2 (2)
| (o, A
(25) g(l) =e_+ e ,
i : ° 9 1+>\ <¢“)l¢“)

+)\3 (3)

;Bq. (25) is an example of the general Wigner theorem that a wave

*through the (Zn + 1) st order.

: From a formal standpoint, it is very easy to express LIJ(n)
,and E(()n) in terms of the resolvent
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RO B - ¢ =-H * '
: e (o] ;
Or, if the ¢; and the € form the complete set of eigenfunctions
‘and eigenvalues of H,, then the 4:(“) and eé n) can be expressed
-in terms of the equivalent spectral expansion. Thus:
! i S V.
| | (1 _ =% Jjo
%(26) o —Rov‘.po -‘:Z € -¢
Pt j o j \
: i ! i B ‘
: | x
; i o i | \'
: (2) _ e 0j jo ‘
(27 ‘o _<¢olVRoVwo>;_ L e -¢ |
: i j le) j g
| o V. V.V
(28) | ( ) =<y_|VR (V-V_ )Rv|¢ >—ZZ T ‘:j)’(’: k_° B
| . . ik o j° o k
‘Here | |

!
1
!

Vi = < Ivig >

'The summations correspond to a sum over all of the discrete states
‘and an integral over the continuous energy states. The prime indi-
‘cates that the state "o'" is omitted. The double prime indicates that
‘the states with k =0 and k =j are omitted. - From Eq. (27) it is
leasy to see that ej 2) is necessanly zero or negative if the state
i'"o" is .the ground state.

- We know the complete set of eigenfunctions and eigenvaluesl
for the unperturbed hydrogen atom and for an unperturbed simple har-
.monic oscillator. Unfortunately, there are very few other practical |
‘cases where we could use such a spectral expansion. Thus, we seek
,exphcit solutions to the perturbation equations. ;
i In many perturbation problems we are given the Hamlltonian H
together with an approximate wave function {,. We are asked to
‘determine, as best we can, the energy E and the wave function ¥ '

‘for the system. In order to put this problem in the framework of pertur-

bation theory, it is necessary to determine a zeroth order Hamiltonian
Hgy. The operator Hg is neither unique nor obvious. Epstein will |
'discuss the optimum determmation of Hy. If {g -is &function of the
‘Spatlal coordinates and does not mvolve spin, then we can write doWn
ithe Stermnheimer Hamiltonian, |
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( 29) i O 2 v tu 4
; ! 1 :
i J . 5
‘where | ; : 6
! : i . 7
| L %, ’v AURY. 8
H 30 { = ey L ] : .
;( ) uo ¢ +2 ; ( 1 - i¢o) LIJo
. i : 9
: ; : 10
‘Thus, we have the obvious identity, ! ; i
| é o '; 13
(31 | = . 14
)(3 ) thJO;GOLPO 15
: : 16
‘If we require that our zeroth order Hamiltonian have a local potential, 17
.then the zeroth order Hamiltonian Hg, -is uniquely equal to hg . 18
If H is spin-free, then for a many electron problem, Yo can 19
ibe written as a sum of spatial functlons ¢j(r) multiplied by spin 20
functlons XJ( s) : 21
i - 3 S22
r l ' i 23
(32) Z (r)x.(s) . L2
i ] - - £ 5
: L{ (')

?Here the spin functions xj( s) are eigenfunctions of both the operatbr
for the square of the spin and the z-component of the spin,correspongi-
iing to a particular spin state of the system. The x](g) form the - |

basis for an irreducible representation of the permutation group, The

¢(r)

27

P30 .

should form the basis to the representation of the permutation 32
group corresponding to the conjugate Young diagram[12]. The exact| 33
iwave function is expressed in terms of the same spin functions, but | 34

different spatial functions: T _ 35
| ; - L 36
, o
! o : 37
,(33) w:Z <I>j(_r)xj(_S_) . 33
| ioor A -39
| i ! : 40

i

‘This suggests that we should be able to develop a spin-free pertur- 41

batlon expansion of a particular. @ (r) starting with the correspond

([
N
[a

ing 5 (r) as the zeroth order waye function. The corresponding 43
Stemhelmer potential is then ! { : ' 44

(34)
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In most cases, the different ¢j(_r_) correspond to different zeroth
‘order Sternheimer Hamiltonians H,- As aresult, it may be necessary
'to use projection operators to insure that the various orders of per-
turbation of a particular ¢ ( ) have the symmetry with respect to
,;permutations correspondmg to the required Young diagram [13].

?VII. NON LOCAL POTENTIALS E

; It is possible to change- the whole character of a perturbation
:problem by adding different types of non-local potentials to the ;
‘Sternheimer Hamiltonian. For example, we could add "energy-shift'
‘operators to form L

(35) | L =h +Z I¢k><¢|
| !

"I'hen if the Yk and e€p arethe eigen'functions and eigenvalues of
‘the Sternheimer Hamiltonian, hgyy = €x Yx» the eigenfunctions of

Ho remain unchanged but the energy values (except for the state "6")
are shifted Ly 5 - |
2(36) Hy = ¢ ¥ andi ,Ho"‘j = (ej + aj)qu .
i é .
"»If we: use H, as our zeroth order Hamiltonian, then from Eq. (26)
s follows that Ly :
b
2 ) Pl
| o bV,
: % A1) _jo '
[EUN b =L T TR

‘a i
!

‘Since 41 is orthogonal to ¢, the perturbation AV can be either

,equal to H-Hg or H-hg. If we choose all the constants a4 equal K

- E, then our Rayleigh-Schr&dinger perturbation equations become
equivalent to the Brillouin-Wigner. However, in principle, it is
‘possible for us to choose each of the .8y so that the exact wave
function T is equal to Y, +A \pé ),

i

| “Feenberg has suggested the use of "Change of Scale"
.operators. For the zeroth order Hamiltonian we take

...............................................................................

(38) H = 0" o)

‘where ¢ is an arbitrary constant, _Here again, .the ¥y._remain
' Ohi
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eigenfunctions of H,. However, :
| ﬁ o P
H ‘ 1, ' .
3 : ==[e, ~(1- L
| :( 9) } Ho\bj c[‘j (} C)EON‘j o
; ,
g Then it follows that % 4
’ ! Ie}
: V. V | ?
: L ~ (1) - ' "jo'j LG
P - (40) Yo ',CZ. € -e  ° P
s , : yoo ) P2
. . I
, : Thus, the change of scale operators have the effect of multiplying | ;.
z S :the first order wave function by a constant. The constant ¢ canbe. ;5
4 CL .varied so as to optimize the expectation value of the energy calcu- .10
i o lated with the sum of the zeroth and first order functions. Dalgarno 17
i .and Stewart [14] have used this variatlon to good advantage. S
E : 1
VIIL. THE HYLLERAAS VARIATIONAL PRINCIPLE L0
H N 2 ;
3 - : If the first order perturbation equation is too difficult to |
; ' ‘solve exactly, we can make use of the Hylleraas variational principle ~~°
| : to optimize an approximate first order.wave function q;(l) . The -
] D 'Hylleraas principle states that for the ground state (or lowest energy
; _state of a given symmetry) ' S
s R ' : /
(a1 (2) ~( 2) o
' - ‘ o i !
H . . LY »
| ‘where - - o
| : , : S 33
o i ' co~(2) _ _~(D) ~(1) (1) (1) :
: : : : =< . - > +< - - >
| )y b H ‘o‘f"o A g lv-e e e
§ )?1)
j (1) (1) 37
i > o
x t<w lV ‘o l q’o ; 33
: i ) . : ~ 5 6’“‘-
:f .The proof of the Hylleraas principle is very simple. If E is the ‘_\(1) it
| ‘expectation value of H calculated with the wave function 4’0 A a1
then it is easy to show that } 1)
i ) j “t
o | ~ (), 2~(2) 3, y
: | ;(43) U E _e°+_xe°‘ + N o*"'+'0(")’")“° ........... eerenn i 45
: o ' P
This is to be compared with the expansion of the exact energy
_ D22, 3,(3)
: (4%) et e e _-Eﬂ- .eo +, .X.eo + )\ o i ..o. - _+ L0 ; 5»""
s
| I
pee )
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‘IX. THE ELECTROSTATIC ANALOGY

By the Rayleigh-~Ritz variational principle, ;:_t: the state '""0" is the
‘lowest energy state of its symmetry, then E > E. The Hylleraas
principle follows. ‘ !
j Sando and Hirschfelder [15] have generalized the Hylleraas ;
‘principle so that if a wave function for a ground state (or lowest %
‘energy state of a given symmetry) is_known through order (n-1), thenf
‘an approximate n-th order function Lp(()n) can be optimized by using
the variational principle '

i
|
_ . L
. ! ~ {
(45) E(()Zn? §€<§2n) , ;
|

‘where (:using the normalization cohdition of Eq. | (12))

2(46) :;( 2n) =<f$(n) lHo'eom;;(n)% +<Egn)w_€(()1)|¢‘()n-l),> i

<Py Do),

i n-1 :

! v (i) oy (n) (n=j) (n-j) y3(n)
-jgze L<¥o e ANGARS I"’o >
-1 pel . .

. G PR OINC S I

i=1l j=n-i+41  + °

¢

: ;Prager and Hirschfelder [16] were impressed by the similarit
.of the first order perturbation equation

| 2o (1)
AR Vol VR =2h Ve g g

;ﬁand the electrostatic equation

§(48) ' Ve(kV¢)=-4np. |

+

i

;To make the analogy: F; corresponds to the electrostatic potential A

‘¢ the 'L]Jé ‘corresponds to the dielectric constant "« ; 'also "-(4‘1r)"1e(()2)
fcorresponds to the electrostatic self-energy of the charge distributiop

i 1

U = > fpd)d‘r‘; and - VFI corresponds to the electric field strengthi ,

&£=-Vo. Thus, we can use in perturbation theory.the Thomsoni: - -

i
!
'
i
H

U . S

12

- 19

fo e Iv Do
[SS RN S - |

R

S ST A AV
"
-1

[USERUV I oV
- N2

el A L
N

[

CU e D

[UPRR UGN RN
w ~1 g

™

,\\h
Saoade e afa e
Nollo> BN ENe SR BT PO VO SN

ey
p

(52 TN o SNV SISO R
-~
e

Do owl

e N
g1 oA

g2



¢ o8
i

e ain

e Su

[ES TN S

i
i

.,,(52)
§

and Dirichlet variational princmles which were originally derived
for electrostatics.

; THOMSON'S PRINCIPLE states that if & is_an approximate
.electric field vector subject to the condition V- (. '€) = 4mp, then

| 1 ¢ o~ o
2(49) USE-T?IKC € dr .
The analogous theorem states that if ;5

is a trial vector subject. to
the condltlon V. ("l’o G) = - z¢o(v-eo )

Ys s then

[
—

h
1
i

(50) o (2)>--fq;~- Gdr .

: O
. A
| DIRIGHLET'S PRINCIPLE states that if V@ or mpg?'v?'

approaches zero faster than the reciprocal of the square of the dis- :

tance in the limit as the distance approaches infinity, then
H ]

5(51) | U:Zw[fp?;dfl | [KTE TRar

H i . i
[ { ' [

;o : I
{ ¢ i ¢ .

.Or i - Do

el -2l v ’>P¢d P/ [42VF VFar .

Actually’,v the Dirichlet and Hylleraas pr1nc1p1es are equivalent. If

jwe set Lp = a’?'tp in the Hylleraas principle, Eqs. (4l) and (42),
‘and optlmize the constant a, then we obtain the Dirichlet principle,
qu. (52). |

‘Thus, the Thomson prmciple gives a lower bound and the

3D1rlchlet (or Hylleraas) principle gives an upper bound to the second
,order energy. These principles are particularly useful in the calcu- i
;lation of the polarizability. If an atom or molecule is placed in a
constant electric field, the polarizability a == 2ey 2)  when the
electrlc field strength is taken as; the. perturbation parameter. Let us
consider a simple example: '

)
!

XEXAMPI»..E Polarizability of 1s Atomic Hydrogen

.................

-1/2 L 20
exp(-r) =8

by = (m)

¥

, Vl=-x;i §e(1)=0.

o e . 1.0
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Thomson Principle:

(2) -lf

subject to the condition

.V'[e-z_ra]-‘j 2xe” °F,

.Let us assume the trial field vector

,?The Thomson principle then gives e( ) > -2.375 or a<4,75,

@J =(r+ -;-) times a unit vectdr in the x-direction,

‘
i

‘Dirichlet or Hylleraas Principle: :Let hs assume that F = ax.

i
{

A2 Zf 2t -2r

dT=-20
(o]

‘Thus, a>4.00.
: The Thomson and Dirichlet principles have shown for this

%example that 4. 00 < a <.4.75., The correct value is a = 4. 50,

i

iwe ‘had used more elaborate trial functions, it would have been

ipossible to obtain very accurate upper and lower bounds for the

i
1
H

f

polarlzabihty. Of course, this example is especially favorable sinc
:we know the exact solution for the system without the external ﬁeld.‘
More usually, we only know approximate solutions to the zero field

problem and more complicated double perturbation procedures are re-

qu1red in order to determine the polarizability (see Ref. 26).

X THE EVALUATION COF INFINITE SUMS

Dalgamo has been very successful in using the techniques |
of perturbation theory in the evaluation of infinite sums. For exampl

ayy s the xx-component of the polarizability, can be expressed

‘terms of Wy, the x-component of the dipole moment, by the:summa-

tlon i !

If we could find a function F for ‘which the matrix component Pjo

'satisfies the relation- - — — il o o

(=0

17;

i

Then,

|
|
!
!
!

|

If
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‘then we could use the rules of matrix multiplication to sum the series,
i é : i7
| | - ) 8
(55) Z(p )o;Fjo = 21 F) g = 2l F 00 * ]
: 10

r’

: : ‘ : 11
‘The term with the minus sign is. due to the fact that j = 6 is not in-. ;2

;cluded in the sum. In order to determine the function ‘'F it is necess-13

ary to solve the differential equation 14
' Lo : 15
z 6 16
(s (H, - )P, -[u SR TR B [ 17
I we multiply Eq. (56) by Lp j and integrate over all space, it is ;g
obv1ous that F; jo satisfies Eq. (54).: Thus, the difficulty of eval- 51
uating the infinite summation has been replaced by the difficulty of 95
solving the differential equation, ! ' 33
I 24
XL, CALCULATION OF ENERGY AN D IMPROVEMENT OF APPROXIMATE! ;5
. WAVE FUNCTIONS o | 26
? L2

. One of the principal applications of perturbation theory is the 28
calculation of the energy and the improvement of the wave function. 29
‘We are given the Hamiltonian H for the system. We are also given 30
'a function {, which we are told to use as a zeroth order approxi- 31
‘mation to the eigenfunction of some state of the system. There are 3e

' four classes of examples which have been studied extensively: : gi
’ 1) Expansion in powers of YA -1 for atoms and diatomic 35
!molecules. Here Z is the atomic number. 36
{ 37
| 2) The approximation of and improvement of, Hartree-I-‘ock 33
:wave functions and energy. } : 39
| 3) +Expansion in powers of R™ 1 for long range intermolecular i'”;
,potentials. Here R is the separation between the molecules, 42
. 4) The ”united atom' expansion of molecular energy in 43
powers of R. A 44

, ! e e 45
In the early days of quantum mechanics, Hylleraas showed 46

that if the Schr8dinger equation for an atom is divided by Z¢ and ! 47
'the unit of length is changed so that r' = Z2r and the scale of energy <4d
‘is changed so that E' =2~ E then we get a new Schrdinger equa-| 49

tion H'W(r) = EMU(r') where | \_ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ C”
{

L OhO * nz

i I %

! RS
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Thus, z-l forms a natural perturbation parameter. The atomic hydro-
‘gen orbitals furnish the zeroth order wave function. The Rayleigh- |
‘Schrédinger perturbation sequence seems empirically to converge for g
'Z > 0.78 for two-electron atoms or ions. Charles Scherr will tell us 10
about his elegant work with Robert Knight on the z-1 expansions of | 11
‘atomic energy states. Matcha and Byers Brown [17] have used a Z'1 12
expansion for considering the hydrogen molecule. For homonuclear | 13
‘diatomic molecules, the z-1 expansion is carried out with p=RZ ! 14
‘held constant, Cohen [18] has used the z-1 expansion to approxi-: 1 ?
‘mate Hartree-Fock orbitals. Even low order orbitals give good approx-
.imations to the values for the Hartree~Fock energy of atoms. Pertur«
bation theory can also be used to calculate the correlation energy ‘
whlch is missing from the Hartree-Fock treatment. ;
‘ Also, since the early days of quantum mechanics, long range 21
‘intermolecular potentials have been expanded in powers of R-1 where 20
‘R is the separation.between molecules A and B. The Hamiltonian ;3
for the two molecule system is expressed as the sum of the Hamilton- 24
‘ian of A plus the Hamiltonian of B plus an interaction potential ! 25
‘Vap+ As long as the charge distributions of A and B do not over- P26
‘lap, it is not necessary to consider the exchange of electrons between< 7
'A and B. If almost all of the electronic charge density of molecule <
‘A lies within a radius ry and, similarly, almost all of the charge ‘ ‘3
densny of molecule B lies within a radius rp, thenif R>rg+r1y,, ~
‘the interaction potential V ab can be expanded in powers of R-1,7 f
3
1'

o Ay O

N
2

50

£,

—~

b
J
3
1
For the interaction of two neutral molecules, the leading term in the “
expans1on of Vgp is Of R-3) and the usual London dispersion energy
e ab/ RO, is given by the second order perturbation energy. Dalgarno . 5
.and others are calculating very precise values of C ab Which can be 3;
_ .,Lused for a variety of experimental applications. However, the over- 37
‘lapping of the charge distributions in the two molecules leads to terms 35
which vary as exp(-cR). Since exp(-cR) is not an analytic func<,6 39 .
‘tion of R™*, it follows that R™" is not a natural perturbation para- 10

w

J‘ ».L\

‘meter and expansions in powers of R-1 have only limited validity. 4l
; Buckingham, Bingel, and Byers Brown and Steiner have con- 13
‘sidered united atom expansions of the molecular energy. Here the ‘;5
‘Hamiltonian is expanded in powers of R starting with the united | 11
f;atom corresponding to a confluence of all of the nuclei. Such an 4?
‘expansion necessarily neglects those regions of electron configura- 45,

ition space where the electrons lie between the nuclei. As a result, 44
.Byers Brown and Steiner [ 19] have found that the energy expansion 40
‘contams a term of the order of R5 1og R. Hence 'R is not a natural 50

et .
R IORY . 2
]




j o ‘perturbation parameter. However, there still remains the possibility ‘
that the united atom expansions will be very useful. ; 3
» We hope that for many chemical purposes sufficient accuracy
will be obtained by calculating the approximate wave function per- |

turbed through the first order and the energy accurate through the |
third order. The recent calculations for the ground state of ut by 'x 8
‘Lyon, Matcha, Sanders, Meath, and Hirschfelder [ 20] have shown | 4
O that starting with the simplest functional forms for the zeroth order l 30
o ‘wave function, the wave function through the first order is accurate ;| 1
; 'to one part in 10, 000 for most nuclear and electronic configurations. - 12
~The energy through the third order is accurate to within 0, 0001 e2/ ag 13

U

11 4. 'which corresponds to 0. 06 kcal/ mole, Similarly, Matcha and Byers 14
S ‘Brown [17] have started with the diatomic hydrogen ion wave function 15
IS ‘as a zeroth order orbital for the ground state of H, and have obtained 16

i f ‘the energy through third order accurate to within 0, 0003 e 2/ ag or ! 17
0 2 kcal/mole. : - ig
1 ‘ Most of the approximate wave functions which are used in ! ;,g
f“f ; perturbation theory do not satisfy the cusp conditions [ 21] so that in ; |

| . 'the limit as two particles come together, Hy, becomes unbounded. : ,,
77 . -Conroy [ 22] has shown how to construct approximate molecular wave >3
Ty functions which satisfy all of the boundary conditions and behave | ;.
o ‘properly at the singular points in the potential. From the standpoint. :s
... ' of strictly variational calculations, the behavior at the singular points 26
27! 'seems to be unimportant. However, in perturbation calculations, 27
S :correct behavior of {, near the singular points may make a large 28
Y :difference in the accuracy of the results. i’:
(. ‘ ' . {
S XII. EXPECTATION VALUES OF PRQPERTIES OTHER THAN ENERGY f :
d - The calculation of the expectation values of properties other }7’
°“ | 'than energy can be treated within the framework of perturbation theory. ;;
“ We distinguish two types of properties~ first order, such as the 36
o dipole moment; and second order, .such as polarizability. For both 37
T types of properties it is expedient to consider a real or fictitious 35
' iy o Hamiltonian | : 39
P : o - : 40
1! (58) 5. H="H+pW . 41
| | - 42
w3 ' 'Here wW is the "external perturbation' where W is related to the 43
/. ‘property under consideration. Then the energy for the extemally . | %
- perturbed system is o ::
o (59) e= E+p.E(1)+ RBP4, o
’ The system without the external perturbation satisfies the Schrbdinger ‘fo

N ! ‘equation " T T T 7 ”'1 '”“"‘““”*““““”“'i 5

' 00 | e
— _ L8

s
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| | ! '
(63) <w>-<w> +x<w>1+... ,
»! | ST

iwhere § |

l(64)

1(65) : <W> -<¢“’le¢ > +<y lwlnp“)> .'

, [
aOr, smce <\p( )I\p >+<\p |¢(l)> -6
e ews e lwiw Frs et T e 1a(D)
(66). i <SW> =<y lw‘:wo I:-«p >+ <y lw Wool"_‘o >,
iHere ¢( . ) .1s the solution .t.C?.the. .fir,SI. order equation .. ... ... ... ..
“n o= e WSV e

N ,’*» : ": B

; ) i q 20 {')Qf\() alatall |(xr\‘~ AN \( L0 0!?0000J00L7f)00 QOO0 (}ﬂHﬁO
’ DAL IAEENDARCYR HI AN --’ ST A IO KR TN XA N IR e

: ; LS ‘ . ;

. | ' .

,( 60) ! HY =EV ,

The expectauon values of first order properties can be expressed in
the form } i :
| | I

(61) <W>=<\IIIW|\II>_E(1) .
:'The expectation values of second order properties are given by
:(62) <Q>=<WlW-éW>|W(1)>_=E(Z) .

iFrom a formal standpoint, <Q> 1s the first order expectation value

of the symbolic operator Q = - (W- <W>)(H E)-L{w- <wW>).
; ‘Unfortunately we seldom know the exact wave function ¥ or
'its energy E. Instead, we know an approximate wave function “’o
fwh1ch satisfies the Schrodinger equation Hoy, =€qyye - We can -
,define the "internal perturbation' which results from the "badness"
‘of the approximate wave function as AV =H - Hg. Then,. since
= ¢o+xq;(1)+x Yo PP Yve Gan express <W> -as a power

i .

! i :

H ! ! N

: SW> : =<y:|W >

| o 4»0! o>,
z i
|

!
and <W>1 , the first correction for the "badness" of the approximate

1

wave function, is given by ; f
‘ i

Acorrelation terms..and Eq. (67). rznay be very difficult to solve, -On —
050 '
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Generally, the internal perturbation 'V involves llri electron “
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,<W>2 is generally difficult to calculate. The interchange theorem

i _
(70) <y MH_ - |¢(°f B> <¢é” w-w Ly, >
R PTLTMRNER

2 : ' I‘ T <¢(o°: l')lv'\,]oo“’o;k

| : o :

| | | I =§_-<¢olv‘-v l¢(°’” :

IR LA AL P ERA R TSt eSS

N MK,

22

i

thlS account, we are fortunate to have the Dalgarno Interchange Z
Theorem which states that ‘\'
| SOTTCH I (o), |
: £ >. = < ’ - > < - ’ 1

.}(68) W =<y N yoolq»o vy lv-v_ Iy ,
where \p(o l)is the first order perturbed wave function corresponding

to the external perturbation and sat1sf1es the equation

: | (o,1)

g(69) | (Ho-e . “(W-W_ )4 . |
The operators W are usually one-electron operators so that Eq. (69)
'is frequently separable and its solutions may even be expressible in!
‘closed form. In any case, Eq. (69) is usually much easier to solve,

than Eq, (67). Thus, <W>; is usually easy to calculate. Unfor- |
tunately there is no interchange theorem which applies to <W>, and

is easy to prove. Multiply Eq. (69) by \pél)* and integrate and
‘compare with the result of mu1t1plying Eq. (69) by q:é 0,1)* and
1ntegratmg. Thus, P

i

‘Ldwdin points out that the 1nterchange theorem is bbvious if one
expresses W) = Ry Vy, and q;(o» 1) := R, Wiy, where Ro is the
symbohc operator

symboll o
s g :
: g 1= by ><y |
: R = e .
(71) 1’ [o) t ‘€ -:H _ )
?  siesomasonnannenroasvonnsssons deadenn : o. ...................................
s
so that l. ~
i ' ;
3; <W> =< VR W+WR V| >,
;(72) 1 gq’ol o o llpo
i b S
T T T T e
| }
b obo s
| :
e i 3
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:Justed to make <nf> = 0, then the resulting values of <r1“>° are

{energy-optimized, the values of <r1“> +A<r ">, are not as good.
1 prOpertiLes may be expanded in poWers of N\ Thus,

1(74) : <Q> = <°x’o*‘:‘“°’1 +oie,

N ]
o
TN T G T D OQUN0eInneN0nH200
’ LN E e Ll ‘ :

xb'on-.xcxm.:;um..‘

10

19

, : ; EIREH N S S LA Ly *lxx 23
: ; C '
The interchange theorem corresponds to the symmetry between V
and W.

:Dalgarno made the further hypothesis or conjecture that if
Yo contains an embedded parameter which can be varied so as to
make <W>; = 0, then the value of <W> corresponding to this
value of the parameter is a better approximation to <W> thanis |-
(<W>, + A <W>; calculated using a c_nfferent value of the parametery .
.The Dalgam‘o hypothesis gives good numerical results in a large
number of cases. Robinson[23] gives the following explanatiori. 11
:If <w>1 =0, then ¢4 satisfies the: hypervmal theorem [24] 12
i i | 14
13) | <y H:H:,-L]]tb >=0 15
! | o 16
:where ‘L is an anti-Hermitian operator satisfying the condition , ig
f\b( 0,1) - Lyg. The satisfaction of the hypervirial theorem has the
1nterest1ng consequence that the wave function Yo is energetically! 20

'stable with respect to variations of the type [24] ¢ -, +wp&°o 1), 21

‘that is, the energetically optimum value of u is zero. Thus, we cal ;>

associate <W>) = 0 with a variational principle for Y.

Sswders and Hirschfelder [ 25] calculated the expectation
vaiues of #srth power of the radius of an electron in the ground |
state ef helium taking o = s3(m)~! exp (-s(rj+r, ). Here n went
from -2 to 46 and the constant s was varied. When s was ad-

23
24
25
26
27
28

comparable in accuracy with the Hartree-Fock values and approxhnate-‘~) :

'ly 91% of the correct value. For other choices of s, such as s

!

[ In a similar manner, the expectation values of second order

X A
where . ! :

: ! (?0.1)
(75) - <,Q>°;-i<\p§: |w|¢°>

3 _ !

;and,usifng another Dalgarno inte‘rchang'e theorem,

z‘ B
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» illmlt as N\ approaches zero? 'If so, what is the range of values of

R Y T e Y TH

Here xp( 0,2) is the second order perturbed wave function corres-
‘ponding to the external perturbation. Since Eq. (76) involves only !
the externally perturbed wave functions, <Q>] is comparatively easy
to evaluate. Again Dalgarno conjectures that if {5 contains an
‘embedded parameter which can be varied so as to make < Q> =0, !
then the corresponding value of <Q>, is the best estimate of <Q>f.
And again numerical calculations support his hypothesis.

; There are two ways that Hartree-Fock wave functions may be
‘used to calculate expectation values: the coupled and the uncoupled
‘Hartree-Fock approximations [ 26]. The coupled Hartree-Fock pro- |
‘vides more accurate results but it is much more difficult to carry out,
isince it requires obtaining a new set of Hartree-Fock orbitals corresf-
.ponding to the Hamiltonian H#. In the coupled Hartree-Fock,
<W>) =0 and <Q>; = 0. Inthe uncoupled Hartree-Fock, <W>1 O
but <Q>; is not equal to zero. Recently Tuan, Epstein, and
‘Hirschfelder [ 27] showed that (thanks to the Brillouin theorem) the
uncoupled Hartree-Fock <Q>; can be expressed rather simply in
‘terms of the first order externally periturbed orbitals which are used
.in the calculation of < Q>4. Thus, we can correct the uncoupled
‘Hartree-Fock expressions for <Q>o for the '"badness' of the wave !
function. E . i

;XIII. MATHEMATICAL PROBLEMS

‘There are basically two types of mathematical problems
jassociated with the use of perturbation theory:

1. First, there is the question as to how the perturbation
changes the eigenvalue spectrum of the Hamiltonian. For example,
.if a molecule is placed in an electric field of constant field strengths
(no matter how small), all of the discrete energy levels are shifted ;
and at the same time broadened into dense packets of continuous
,energy levels which physicists call "metastable' states. This is
;1llustrated in Fig. 1. The Auger effect and the Lamb shift for’ excited
.state atoms furnish other examples where the discrete energy eigen-‘
'values of Hg ''disappear into the continuum'' with the application of
‘the perturbation. Fortunately, Kato [ 3] and Titchmarsh [ 28] have |
,studied such problems and have provided us with criteria for H, and
.V such that the average energy of the metastable state is correctly 5
‘calculated by perturbation theory.

- 2. Second, there is the question of the convergence of the
perturbation series. Does the perturbation series converge in the

'\ for which the perturbation series converges? Kato [ 3] has shown,
by using a variational treatment, that even if the.perturbation series%
il
i i
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‘only converges in an asymptotic sense , there is the possibility
(depending upon the nature of H, and \V) that the first few terms
.of the perturbation series (if thev exist) may provide a useful approx-
‘imation to the properties of the perturbed system. Kato [3] explains
-that "roughly speaking, perturbation theory gives correct results in ‘
the sense of asymptotic expansions as long as the necessary quan-f ,
.. tities are calculated by operations in Hilbert space". ‘*

i

As Friedrichs, McLeod, Conley, Brownell, Rejto, Kuroda,

de Branges, and Phillips will tell you in this symposium, the nature’
.of the spectrum and the nature of the convergence depend sensitively
~on the nature of the operators Ho and V. In molecular quantum !
mechanics, we are usually given an operator H and we are given ‘

great latitude in how H is resolved into Hy and AV, Thus, the °

‘answer to the question, "What is Hg ?" will depend upon very

general mathematical studies of the foundations of perturbation
theory. There are three types of perturbed Hamiltomans which occur

in quantum chemistry:

l. In calculating the energy of a molecule, we usually use

' an electrostatic Hamiltonian in which the only singularities are i
. poles corresponding to the confluence of any pair of particles. The |

"work of Kato [3] has given us justification for treating molecular
. energy problems within the framework of perturbation theory.

2, In calculating the hyperfine structure of a molecule, we '

".sometimes use the Breit-Pauli Hamiltonian which contains singular-i_
ities of the third order. What is the spectrum of such a Hamiltonian?

" Canwe legitimately use the Breit-Pauli Hamiltonian to calculate the,

' energy through the first order? Lowdin [29] has shown that these |
third order singularities do not occur in the original Dirac equatlons

!

and therefore should not occur in the physical problem.
1

3, In calculating the expectation values of properties other!

“than energy, we use as the perturbed Hamiltonian ¥ = H + uW,

+ Here the external perturbation pW may correspond to a physwally |

realizable external field or it may be a convenient mathematical !
fiction. In either case, W is the operator associated with the .
particular expectation value which we desire. The operator W may
correspond to any physical property of the system. Adding pW to ‘
H can therefore lead to a very strange sort of Hamiltonian ¥ with
very strange spectrum, etc. What restrictions must be placed on ,
the operators W in order that the eigenvalues of - ¥ are analytic -
functions of pn?
‘Other mathematical problems are less profound, but still

puzzling. For example, we would like to know how to treat electron
. exchange as a perturbation. It is an unusual type of perturbation §

! which is associated with an unusual type .of degeneracy [30]... _ .- |
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: _ : 1
Consider the hydrogen molecule as an illustration [31].  We distinguish 2
two zeroth order wave functions: ¢ = a;b,, corresponding to electron -
.1 on atom A and electron 2 on atom B, and ¢ =ayb;, whichis|
the same function with the electrons mterchanged The expectation 2

value of H calculated with {, gives the same energy as if it were
calculated with ;. Thisis the sense in which the two electron
configurations are degenerate, However, y; and §, correspond
to different Hg's and therefore they are not degenerate in the usual | g
S sense. Of course one can use a 11near combination of ¢; and ¢, 11
3 (with the proper symmetry) as a zeroth order function and proceed to | 12
P form a standard perturbation calculation, However, intuitively one 13
1+ . _feels that it should be possible to use 1 as the zeroth order func- ! 14
LE tion and express the effects of the required symmetrization or anti~ | 15
symmetrization as a perturbation operator. Primas [32] feels that the; ”_’
difficulty in doing this repre sents a defect-in the formulation of l(‘ ‘
o quantum mechanics. 18
N P Another type of problem which requires further mvestigation , :9
“Y . is the perturbation treatment of almost~degenerate states. If these 51
) states are treated as non-degenerate, there are no formal difficulties| ;.
N but the perturbation series only converges for very small values of 2
A . Instead, we can consider explicitly the set of states whose Ay
a energies lie close together and carry out a combined perturbation- 25

S variation (DEFOPVIM) treatment [ 1 ] in which neither the energy nor | 256
.7 | . the wave function are analytic functions of X\ , but the matrix com~ 2

7 ponents‘in the secular equation are analytic functions of A . Such L8
% ¢ - a scheme represents a generalization of our usual definition of per- &9
30 | turbation theory. It has the practical advantage that it permits us 30
SR to extend the domain of acceptable values of A . 3 !
LT Z Indeed we are interested in the general question of how we 32
*5 1 can improve the convergence of the perturbation series. For some . ?34
v types of problems, the convergence of the Brillouin-Wigner or ,‘ jr)

. Feenberg series is faster than for the Rayleigh-Schrédinger. However,

|
| b
4 f for many-body problems,the Rayleigh~Schrédinger is required. Are ;35'7
PP there convenient criteria that we might use to tell us which series 38
S0 | should be used ? 39
B In many physical problems it is not clear what we should use| 40
41 as a perturbation parameter [33]. Actually, in the atomic energy 41
problem, z~l did not appear to be the natural parameter until after 42
we had changed the scale of our coordinates and energy. Transfor- 13
, mation of variables may completely change the complexion of a per- 4#
%+ turbation problem and suggest a different choice of expansion para- i:
L meter. Thus there is a search underway for natural perturbation ppe
“* | parameters to use for long range intermolecular forces (where Rl s .
" not satisfactory); for the united atom expansion (where R.is not 4 N
' satlsfactory) etc. o R Y
. ' 51
: EOREY 52

~ 56
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| One of the problems which has intrigued me, is the search |
for a fast converging perturbation scheme. The Rayleigh-Schrédinger
.formalism is needlessly slow in converging because it does not take
;advantage of the fact that after you have obtained the n-th order wave '
functlon you know the energy accurate through the (2n + 1)st order. | ‘
Thus two years ago, I suggested [34] an iteration process (FOPIM) i
in whlch the sum of the zeroth and first order wave functions is useq
‘as the zeroth order wave function in a new calculation to obtain an |
:improved first order function, etc. After the n-th iteration, the ?
‘expectation value of the energy is given by a complicated non-
;analytic function of A, which may be expanded in an asymptotic
‘series in powers of N accurate up to terms of the order of \ raised
‘to the .2n+l power, Unfortunately, the iterated perturbation potential
‘is not analytic in A and convergence difficulties make this method
,unattractlve [35]. There are, however, many other types of iteratlve
‘procedures which might be more practical [36, 37]. ;
Unfortunately I did not have time to discuss the important '
and difficult problems of time-evolution, scattering, and many-body
systems which are of great interest to theoretical chemists. i
'1 have tried to explain how we are trying to determine the '
- steady-state properties of molecules and what mathematical diffi-
'culties we are encountering. - The better we can understand the basié ot
i mathematical nature of our equations and the mathematical structure | 26
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' 'of their solutions, the easier it will become to devise practical 27
Imethods for determining the molecular properties. 28

,i | ' 20
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i since the series solution cannot decide whether to converge |
to the gerade or the ungerade state of the diatomic hydrogen
ion. For small values of R, Robmson s series does converge
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